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Abstract—This paper studies the multi-objective fish breeding
program design (MO-FBPD), which is an important problem with
significant impact in the aquaculture industries. For the first time,
we formulated the problem into a multi-objective optimisation
problem, including the design of the decision variables, objective
functions and constraints. We also developed a simulator for
the fish breeding process to facilitate research and analysis.
Then, we applied the well-known NSGA-II to solve the MO-
FBPD problem, analysed the performance of NSGA-II, and the
distributions of the solutions obtained by the algorithm. The
results shown are promising. First, it is observed that the breeding
program, represented as the top percentage of the fish selected
for mating, can generalise to different fish population size. In
other words, the trained breeding programs can be applied to
future breeding processes with any fish population size. Second,
it is observed that the long-term and short-term gains of the
fish population are conflicting with each other, and they follow a
linear relationship. Finally, if the selection strength is too greedy,
it may negatively affect even the short-term gain. This work is a
promising preliminary study in this problem domain, which can
pave the way for further research in MO-FBPD.

I. INTRODUCTION

Breeding program design is an important problem in agri-

culture and aquaculture industries. A breeding program con-

trols the breeding of a population with the aim of a breeding

new individuals with improved production traits such as fast

growth and size.

In this paper, we focus on studying the fish breeding

program design. A fish breeding program can be represented

as a set of decisions. Selection strength is the proportion of

fish culled between generations, and is the decision variable

used in this research. Strong selection for well performing

individuals increases mean productive traits in the population

but reduces genetic diversity.

A well designed program allows desired productive gains to

be made while maintaining genetic diversity. This allows for

population size to be easily minimised, reducing cost without

damaging either productive gains or diversity. This problem

has inherent biological trade-off between productive traits and

genetic diversity, so the problem can be formulated as multi-

objective problem, allowing for an analytic balance between

objectives rather than manually designed heuristic approaches.

Multi-Objective Optimisation (MOO) is a well researched

field, which has had extensive application to optimisation prob-

lems. In recent years evolutionary multi-objective optimisation

(EMO) [1] has become the state of the art technique for

solving this task, and has been applied to a wide range of

problems including vehicle routing [2], fault diagnosis [3],

water distribution [4] and a multitude of design problems

[5] [6] [7]. However, there is no existing research on multi-

objective optimisation applied to animal breeding, although

grains have had some attention [8], [9]. This specific area of

research is lacking in data and requires a simulation to be

developed.

This paper aims to investigate the MO-FBPD problem, with

the following specific research objectives.

• Develop the simulation for the fish breeding process

based on the SLiM [10] software. The fish gene repre-

sentation, breeding process and simulation configurations

(e.g., population size, mating rate, selection strength,

breeding duration) are designed.

• Formulate the fish breeding program design as a multi-

objective optimisation problem, including the definition

of the decision variables and objective functions (i.e., fish

quality and genetic diversity).

• Apply NSGA-II to solve the multi-objective fish breeding

program design problem and investigate the performance

of the obtained breeding programs on the training simula-

tions and the generalisation to the unseen test simulations.

The rest of the paper is organised as follows. Section II gives

the background on the breeding program design problems and

the multi-objective optimisation. Then, Section III describes

the MO-FBPD problem defined in this study. Section IV shows

how to apply NSGA-II to solve the proposed MO-FBPD

problem. Section V is the experimental studies, and results and

analysis. Finally, Section VI concludes the paper and shows

some potential future directions.

II. BACKGROUND

A. Breeding Program Design

Besson et al. [11] investigated the relationship between feed

conversion ratio and growth rate and how the relationship

should be applied to fish breeding program design. Feed

conversion ratio (FCR) is a standard breeding metric of

efficiency of livestock. It is calculated as the mass of feed vs

978-1-7281-9048-8/21/$31.00 ©2021 IEEE

20
21

 IE
EE

 S
ym

po
siu

m
 S

er
ie

s o
n 

Co
m

pu
ta

tio
na

l I
nt

el
lig

en
ce

 (S
SC

I) 
| 

97
8-

1-
72

81
-9

04
8-

8/
21

/$
31

.0
0 

©
20

21
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
SS

CI
50

45
1.

20
21

.9
65

99
36

Authorized licensed use limited to: Victoria University of Wellington. Downloaded on April 05,2022 at 22:08:01 UTC from IEEE Xplore.  Restrictions apply. 



output meat. Three different breeding methods are evaluated;

maximising growth, maximising growth and economic return,

and maximising growth and minimising eutrophication. Both

two-trait breeding methods outperform the baseline in terms

of economic return and eutrophication respectively. However

no trade-off between these traits is investigated.

Holtsmark et al. [12] studied how genetic relationships

within initial breeding populations affect diversity and trait

gain. Simulation is used to gather data, trialling different

configurations of sub-populations for each breeding program.

Other parameters of the breeding program are kept constant;

selection is carried out for 10 generations, maximising genetic

trait gain, at a fixed rate of inbreeding. Inbreeding rate uses

the theory of optimal contribution selection [13]. A breeding

program with sub-populations was found to positively impact

genetic diversity. Within the simulation an increase from one

sub-population to four increased genetic diversity by 7%.

A simulation can be used as a surrogate to a true fish

breeding program. SLiM [10] is a genetic simulation frame-

work, built upon Edios Scribe. SLiM allows control over ge-

nomic and evolutionary components of a population. Genomic

components include chromosome length, mutation types and

mutation rates. Evolutionary components include selection,

population size and number of generations. SLiM is effective

for modeling evolutionary problems. This paper [14] on fish

mating design reviewed the relationship between genetic vari-

ance and production traits. A systematic approach for finding

an optimal breeding program is not produced. These exper-

iments are performed in a simulation. Competing objectives

are mentioned but multi-objective is not considered. Multi-

objective breeding strategies for sustainable food improvement

[9] studied the use of multi-objective approaches for wheat

breeding. It optimised the trait gain with genetic variation. It

presented several approaches and compared them to standard

breeding schemes through data and simulations. At the end

of long term simulations trait gains were 20%-30% greater

for multi-objective techniques compared with traditional ap-

proaches.

B. Evolutionary Multi-Objective Optimisation

A Multi-objective Optimisation Problem (MOP) [15]–[17]

can be modelled as follows.

min F (x) = (f1(x), ..., fm(x)), (1)

s.t. : x ∈ Ω, (2)

where x is the decision vector, and Ω is the decision space (the

set of values that each variable can take). There is no single

global optimal x that achieves the optimal value of all the

objectives. Note that we can easily convert any maximisation

into minimisation by negating the objective function.

Definition 1 (Dominance relation). Given two solutions x1

and x2, x1 dominates x2 (or x2 is dominated by x1) if (1) ∀
k ∈ {1, . . . ,m}, fk(x1) ≤ fk(x2) and (2) ∃ k ∈ {1, . . . ,m},

fk(x1) < fk(x2).

Definition 2 (Pareto optimality). A solution x
∗ is a Pareto

optimal solution if there is no other solution in Ω that

dominates x
∗.

The Pareto optimal set is the set of all the Pareto optimal

solutions in Ω.

The Pareto front is the projection (objective vectors) of the

Pareto optimal set in the objective space.

The aim of a MOP is to find the Pareto optimal set and

Pareto front rather than a single global optimum. This makes

it much more challenging than single-objective optimisation

as it needs to consider various factors such as coverage and

diversity that single-objective optimisation does not consider.

Evolutionary Algorithms (EAs) are promising techniques to

solve MOP due to its population-based search mechanism,

which makes it natural to optimise a set of solutions simulta-

neously.

There are three main design issues in Evolutionary Multi-

objective Optimisation (EMO) [18], which are (1) fitness

assignment; (2) diversity preservation and (3) elitism. For

fitness assignment, one needs to assign a scalar fitness value to

the individuals for the parent and environmental selection. For

diversity preservation, unlike in single-objective optimisation

where all the individuals tend to converge to the global

optimum, it is important in MOP to make the individuals in

the population diversely distributed so they can have a good

spread and cover the Pareto front well. The elitism means that

the non-dominated solutions should not be lost in the later

stage of the search process.

So far, the existing EMO algorithms can be categorised

into three main groups. The first group is the indicator-based

approaches, which use the performance measure indicators

such as hypervolume (HV) to assign fitness to the individuals.

Examples include [19]–[21].

The second group is based on the Pareto dominance rela-

tion, and selects individuals based on the Pareto dominance

relation. A famous algorithm belonging to this category is the

NSGA-II [22]. Specifically, at each generation of NSGA-II,

an offspring population is first generated from the current

population. Then a new population is formed by merging

the current and offspring populations together. After that,

a non-dominated sorting is conducted (with complexity of

O(MN2)), and all the individuals in the merged population

are divided into several “fronts” based on their dominance re-

lations with others. That is, all the non-dominated individuals

in the merged population are placed into the first front. Then,

all the remaining individuals that are dominated by only the

individuals in the first front are placed into the second front.

This way, the individuals in each front are dominated by only

those in the previous fronts. In addition, to distinguish the

individuals in the same front, the crowding distance metric

is calculated so that the individuals in less crowding areas

(larger crowding distances) are preferred. Other well-known

algorithms include SPEA2 [23].

The third group contains the decomposition-based algo-

rithms. These algorithms decompose the original MOP into
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a set of single-objective optimisation sub-problems (each

corresponding to a region/point of the Pareto front). To breed

offspring for each sub-problem, the parents are selected from a

subset of the population containing the individuals with high

fitness for the corresponding sub-problem. A representative

algorithm in this category is MOEA/D [24]

EMO algorithms are criticised for their large number of

function evaluations [25]. For problems with expensive func-

tion evaluations this can make traditional algorithms infeasible,

expensive or slow. Many techniques have been suggested

to address this [25]–[27]. They can be grouped into three

main categories; problem approximation, such as simulating

a real-world problem; function approximation, replacing the

objective functions with cheaper functions; and evolutionary

approximations, reducing the number of function evaluations

by approximating similar individuals [28].

III. MULTI-OBJECTIVE FISH BREEDING PROGRAM

DESIGN

In this section, we will describe the MO-FBPD problem we

formulate and investigate in this study. We will first describe

the overall fish breeding simulation process, which was im-

plemented via the SLiM software [10]. Then, we describe the

decision variables and objective functions considered in the

MO-FBPD problem.

A. Fish Breeding Simulation

We use the SLiM simulation software to simulate the fish

breeding and mating process. The chromosome of each fish is

represented as a string, where each bit in the string can take

three possible values: B, N and E. The letter “B” means

that the bit has been through a beneficial mutation. The letter

“N” indicates that the bit has been neutrally mutated, while

the letter “E” means the bit has not been mutated yet (empty

mutation). Here, a mutation can occur with a low probability

when a fish is born from its parents. A beneficial mutation

may increase the quality of the fish (e.g., size and taste). On

the other hand, a neutral mutation changes the genome of

the fish without affecting its quality. However, it increases

the diversity of the fish population, and may increase the

potential of generating better fish in the future. Specifically, a

fish chromosome Ci can be represented as

Ci = [ci1, ci2, . . . , ciK ], (3)

where K is the chromosome length, and cik ∈ {B,N,E}.

From the chromosome of a fish, we can calculate the number

of beneficial and neutral mutations as follows:

βben(Ci) =

K∑

k=1

I(cik = B), (4)

βneu(Ci) =

K∑

k=1

I(cik = N), (5)

where I(X) = 1 if the statement X is true, and 0 otherwise.

Algorithm 1 shows the details of the SLiM simulation

process. Given an initial fish population Pinit, the selection

strength parameter θ, the number of generations for the

breeding Gbreed, and the random seed seed for the parent

selection and mating, the simulation will return the final fish

population PGbreed
.

In each breeding generation, the top N×(1−θ) individuals

from the current populations are first selected based on the

selection strength, and placed into the mating pool. Then, a

new offspring population is generated from the individuals in

the mating pool. Specifically, we repetitively select two parents

p1 and p2 from the mating pool using roulette wheel selection

(proportional to βben), and generate two offspring o1 and o2
through the mating(·) function.

Algorithm 1: FishBreeding(Pinit, θ, Gbreed)

Input: Pinit: the initial fish population
Input: θ: the selection strength
Input: Gbreed: the number of generations for breeding
Input: seed: the random seed
Output: Pbred: the fish population after the breeding process

1 N = |Pinit| ; // fish population size

2 P0 = Pinit, g = 0;
3 while g < Gbreed do

// fish mating for one generation

4 pool = top N × (1− θ) individuals in Pg ;
5 Pg+1 = ∅;
6 while |Pg+1| < N do

// born new fish from the mating pool

7 p1, p2 = roulette wheel selection from pool;
8 o1, o2 = mating(p1, p2);
9 Pg+1 = Pg+1 ∪ {o1, o2};

10 end
11 g = g + 1;
12 end

13 return Pg ;

Algorithm 2 shows the mating process of two parents to

produce two offspring. First, a few cut points are randomly

selected from the chromosome, and the substrings between the

cut points are swapped between the two parents. After that,

each gene of each chromosome will have a tiny probability to

be mutated, i.e. its value will be randomly re-sampled from

{B,N} if it currently is E.

Algorithm 2: Mating(p1, p2)

Input: p1 and p2: the two parents
Output: o1 and o2: the two offspring

1 Randomly choose a number of cut points in the chromosome;
2 Swap substrings of p1 and p2 at the cut points to get o1 and o2;
3 foreach ck ∈ o1 and o2 do

4 if ck = E then

5 Re-sample ck from {B,N} with a tiny mutation
probability;

6 end
7 end

8 return o1, o2;

B. Decision Variables and Domain

In this study, we consider only a single decision variable,

which is the selection strength θ that determines the top

percentage of the fish population to be selected into the mating

pool. The selection strength ranges from 0 to 1− 2/N , where
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N is the fish population size. If the selection strength is 0, then

all the fish in the current population can be selected for mating

regardless of their quality. On the other hand, if the selection

strength is 1− 2/N , then only the top 2 fish individuals (with

the largest number of beneficial mutations) in the population

with be selected for mating.

As a result, a (simple) fish breeding program is represented

as a single number θ ∈ [0, 1 − 2/N ], which is the selection

strength in each breeding generation.

It is noteworthy that from line 4 of Algorithm 1, there are

essentially N − 1 unique possible situations for the selection

strength (i.e., from top 2 to the entire fish population). In other

words, the search space seems to be linear to the problem size.

However, exhaustive search is usually not possible in the real

world due to two reasons: (1) the fish population size can

be very large in the real world (e.g., millions of fish in the

population); (2) the fish population size can vary from one

scenario to another. To generalise among the scenarios with

different fish population sizes, the selection strength need to

be kept as a continuous percentage value rather than a discrete

number, which cannot be enumerated.

C. Objective Functions

In this study, we consider to maximise the following two

metrics to evaluate the quality of a fish breeding program.

• The average quality of fish in the final population after

the breeding process.

• The diversity of the final population after the breeding

process.

Obviously, both metrics are based on the final population after

the breeding process. Given a final fish population P obtained

by a fish breeding program θ, the above two metrics of θ can

be calculated as follows.

max f1(θ;P) =
1

|P|

∑

Ci∈P

βben(Ci), (6)

max f2(θ;P) =
1

|P|

K∑

k=1

I(∃Ci ∈ P, cik = N), (7)

Eq. (6) indicates the average quality of fish in the final

population, which is reflected by the number of beneficial

mutations in each fish. Eq. (7) shows the number of genes in

the chromosome that have been mutated neutrally, divided by

the number of fish. For example, if there are three fish, whose

chromosomes are “NNEEE”, “NEEEE” and “EENEE”, then

there are three genes (in the first three positions) with neutral

mutation, and the diversity of the population is 3/3 = 1.

Note that the above metrics depends on the SLiM sim-

ulation, which is random (in initial population and mating

process). That is, even with the same breeding program,

different simulations (i.e., random seeds) will produce different

final fish population, and different values of Eqs. (6) and (7).

As the ultimate goal is to obtain a high-quality fish breeding

program on an unseen fish population (i.e., generalisation),

we use a set of training simulations to evaluate the breeding

programs. Each training simulation contains the initial fish

population, number of breeding generations, and random seed

for the breeding process.

Algorithm 3 shows the calculation of the two objectives

of a breeding program θ. It runs each training simulation

with the selection strength θ (note that FishBreed(θ; sim)
in line 3 is essentially the same as Algorithm 1 by taking the

corresponding parameters from the simulation configuration).

Then, for each bred fish population, it calculates the two

metrics based on Eqs. (6) and (7). Finally, the objective values

are calculated by averaging over all the training simulations.

Algorithm 3: Objectives(θ;Strain)

Input: θ: the selection strength
Input: Strain: the training simulations
Output: the objective values of θ

1 f1 = 0, f2 = 0;
2 for sim ∈ Strain do

// run the simulation breeding process

3 P(sim) = FishBreed(θ; sim) ;
4 Calculate f1 and f2 by Eqs. (6) and (7);
5 f1 = f1 + f1(θ;P(sim));
6 f2 = f2 + f2(θ;P(sim));
7 end
// average over all training simulations

8 f1 = f1/|Strain|, f2 = f2/|Strain|;
9 return f1, f2;

D. Relationships between Objectives

In Eq. (7), we know that

K∑

k=1

I(∃Ci ∈ P, cik = N) ≤
∑

Ci∈P

K∑

k=1

I(cik = N), (8)

and the equality is satisfied if all the individuals have their

neutral mutations (“N”) in different genes.

From the definition of βneu in Eq. (5), we have

K∑

k=1

I(∃Ci ∈ P, cik = N) ≤
∑

Ci∈P

βneu(Ci), (9)

It is clear that for any fish chromosome Ci, we have

βben(Ci) + βneu(Ci) ≤ K, (10)

where K is the length of the chromosome. The equality

is met when all the bits have mutated (either beneficial or

neutral). Therefore, for any fish chromosome, if all the bits

have mutated, we have βben(C) = K − βneu(C). Given any

population P , from Eqs. (6) and (7) we can have

f2(θ;P) ≤ K − f1(θ;P). (11)

In addition, if all the genes of all the chromosomes are mutated

and different chromosomes have their neutral mutations on

different genes, then the two objectives should be on the line

x+y = K. This obviously shows the conflicting relationships

between the two objectives.

In practice, however, one cannot guarantee that the two sides

of Eq. (11) are equal, and the objective values of the fish
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chromosomes always on that line. This is because Eq. (11)

assumes that every bit in the chromosome has mutated, which

is not true in practice. On the contrary, the chromosome length

is very long (e.g., > 10000) and the mutation probability

is very tiny. As a result, only a small amount of bits will

be mutated. Furthermore, one cannot guarantee that different

chromosomes have no common genes with neutral mutations.

As a result, the Pareto front of this problem should be below

the line x+ y = K.

IV. NON-DOMINATED SORTING GENETIC ALGORITHM-II

FOR MO-FBPD

In this study, we use the well-known Non-dominated Sorting

Genetic Algorithm-II (NSGA-II) [22] to investigate the MO-

FBPD problem. The flowchart of the process is shown in Fig.

1. It uses a set of training simulations to obtain a set of non-

dominated breeding programs, and then apply them to the

unseen test simulations to see their test performance.

Fig. 1. The flowchart of the NSGA-II for MO-FBPD.

The pseudo code of NSGA-II training for MO-FBPD is

shown in Algorithm 4. It follows the conventional NSGA-

II framework. First, a population of breeding programs Θ0

is initialised. Then, at each generation, an offspring popu-

lation Θ′ with the same size as the current population is

first generated by parent selection, crossover and mutation

operators. After all the offspring have been generated, the

current population and the offspring population are combined,

and the next population is selected by the non-dominated

sorting and crowding distance (i.e., NDSortingCD(·) in line

23). Finally, the first front of the final population is returned.

An individual is directed represented as the selection

strength θ. It is a continuous value taken from [0, 1 − 2/N ].
The parents are selected by the binary tournament selection.

That is, two individuals I1 and I2 are first randomly selected

from the population. Then one individual is selected based on

the following criteria.

• If rank(I1) < rank(I2), then select I1;

Algorithm 4: NSGA-II training for MO-FBPD

Input: Strain: the training simulations
Output: the non-dominated set of breeding programs Θ∗

1 g = 0;
2 Randomly initialise a population of breeding programs Θ0;
3 foreach θ ∈ Θ0 do

4 f1(θ), f2(θ) = Objectives(θ;Strain);
5 end

6 while stopping criteria are not met do

7 Θ′ = {}; // offspring population

8 while |Θ′| < |Θg | do

9 Select θ1, θ2 ∈ Θg by binary tournament selection;
10 if rand < Prc then

11 Generate two offspring θ′
1
, θ′

2
= SBX(θ1, θ2, ηc);

12 else
13 θ′

1
= θ1, θ′

2
= θ2;

14 end

15 if rand < Prm then

16 θ′
1
= PolyMutation(θ′

1
, ηm);

17 θ′
2
= PolyMutation(θ′

2
, ηm);

18 end

19 f1(θ′1), f2(θ
′

1
) = Objectives(θ′

1
;Strain);

20 f1(θ′2), f2(θ
′

2
) = Objectives(θ′

2
;Strain);

21 Θ′ = Θ′ ∪ {θ′
1
, θ′

2
};

22 end

23 Θg+1 = NDSortingCD(Θg ∪Θ′) ;
24 g = g + 1;
25 end
26 return the first front of Θg ;

• If rank(I1) = rank(I2) and CD(I1) ≥ CD(I2), then

select I1;

• Otherwise, select I2.

The Simulated binary crossover (SBX) operator and polynomial

mutation (PolyMutation) operator are used for generating

offspring. More details can be found from [29] and [30].

V. EXPERIMENTAL STUDIES

To investigate the performance of NSGA-II in solving MO-

FBPD, we conduct the training and test process as shown in

Fig. 1, and evaluate the training and test performance of the

obtained breeding programs.

A. SLiM Simulation Configuration

We create 30 SLiM simulations for training, and another

30 SLiM simulations for each test case. In the training

simulations, there are 500 fish in the population. In the test

simulations, there are 1000 and 2500 fish in the population. We

set a different number of fish in the population in the training

and test simulations, to assess the generalisation of the ob-

tained non-dominated breeding programs among different fish

population sizes. In both the training and test simulations, the

breeding lasts for 50 generations. The length of chromosome

is set to 9999.

Note that the SLiM simulations starts with fish with no mu-

tation (i.e., chromosome bits are all “E”). To avoid this initial

bias, we pre-run the simulation for 500 breeding generations

(zero selection strength) to obtain an initial population with

diverse fish chromosomes.
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B. NSGA-II Parameter Settings

Table I gives the parameter settings of NSGA-II. In the

experiments, NSGA-II was run 30 times independently, to get

30 sets of non-dominated breeding programs. Then, each set

of breeding programs is tested on the test simulations (1000

fish and 2500 fish), respectively.

TABLE I
THE NSGA-II PARAMETER SETTINGS.

Parameter Value

Population size 100
Number of generations 250

Crossover probability Prc 0.9
Mutation probability Prm 0.01

Crossover parameter ηc 2
Mutation parameter ηm 50

For comparison, for each simulation scenario (500, 1000

and 2500 fish population size), we run the enumeration method

(selecting the top 2 fish, 3 fish, . . . , the whole population) to

obtain the optimal Pareto front of the breeding programs. The

results are shown under “Enumeration (Optimal)”.

We use the hyper-volume (HV) and inverted generation

distance (IGD) as the performance metric to evaluate the

evolved Pareto fronts. First, we normalise the two objective

values into the range [0, 1]. Then, for the HV calculation, we

select the reference point of 0.0. For the IGD, the optimal

Pareto front obtained by the enumeration method is used for

the calculation.

C. Results and Discussions

Table II presents the mean and standard deviation of the

HV values of the enumeration (optimal) and NSGA-II on the

training dataset and the two test datasets (1000 and 2500 fish,

respectively). The enumeration method is deterministic, there-

fore it returns a single value. We conduct the Wilcoxon rank

sum test with significance level of 0.05 to compare between

the results of NSGA-II and the optimal results obtained by

enumeration. The significantly better results are highlighted

in bold.

TABLE II
THE HV RESULTS OF NSGA-II AND ENUMERATION (OPTIMAL).

Scenario Enumeration NSGA-II

(Optimal) mean (std)

Training 0.577441 0.575876 (0.000225)

Test (1000 fish) 0.553054 0.530340 (0.001104)

Test (2500 fish) 0.500687 0.487704 (0.001337)

From Table II we can see that the training HV of NSGA-

II is very close to the optimum (0.576 vs 0.577), although it

is statistically significantly worse. For the two test cases with

1000 and 2500 fish, we can see that the generalised HV value

of NSGA-II is also very close to the optimal HV. This is a

good sign, which shows that the breeding programs obtained

Fig. 2. The distribution of the objective values obtained by NSGA-II and
enumeration on the training dataset (500 fish).

by NSGA-II for 500 fish can be generalised to 1000 and 2500

fish breeding processes very well.

Table III shows the IGD of NSGA-II on the training and test

datasets. Note that the enumeration results are omitted here,

since they are optimal, and can always achieve IGD of zero.

TABLE III
THE IGD MEAN AND STANDARD DEVIATION OF NSGA-II IN 30 RUNS.

Scenario NSGA-II IGD

Training 0.003447 (0.000287)

Test (1000 fish) 0.013498 (0.000647)

Test (2500 fish) 0.007991 (0.000446)

From Table III, we can see that NSGA-II an achieve very

small IGD values on the training and test scenarios. This is

consistent with the HV results.

Figs. 2–4 show the distributions of the objective values ob-

tained by NSGA-II and enumeration (optimal) on the training

and test datasets. From Fig. 2, we can see that the Pareto front

obtained by NSGA-II can cover the true Pareto front very well.

The green points are almost overlapping with the red ones,

including the extreme points, and missed only a few regions

in the middle. It can also be seen that f2 is much smaller than

f1. This is because different fish may have neutral mutation

in the same gene, which does not increase f2.

From Figs. 3 and 4, we can see that the results of NSGA-II

are still mostly overlapping with the true Pareto front. The

slightly worse test HV and IGD values of NSGA-II were

mainly due to the weaker coverage, specifically in the region

with large f1. In other words, the breeding programs with large
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Fig. 3. The distribution of the objective values obtained by NSGA-II and
enumeration on the test dataset (1000 fish).

Fig. 4. The distribution of the objective values obtained by NSGA-II and
enumeration on the test dataset (2500 fish).

f1 (number of beneficial mutations) are harder to generalise

to different number of breeding fish.

From the figures, it is also interesting to see that the Pareto

fronts are almost aligned with a straight line. That is, the

relationship between the two objectives is linear. It is worth

noting that in all the figures, the Pareto front is far below the

upper bound f1 + f2 = K (K = 9999). This indicates that

there are still many genes in the fish chromosome without any

mutation.

Fig. 5. Relationship between the selection strength θ and f1.

Figs. 5 and 6 show the relationship between the selection

strength (θ) and the two objectives for the scenarios with 500,

1000 and 2500 fish. The results were obtained by enumeration.

From Fig. 5, we can see that for all the scenarios, as θ in-

creases, f1 (number of beneficial mutations) tends to increase

monotonically until θ = 0.8680. The monotonic increasing

pattern of f1 is intuitive, as the parent fish in the mating

pool tend to have more beneficial mutations as θ increases.

It is interesting to see that when θ is too large, the number

of beneficial mutations tends to decrease, due to the lack of

diversity in the population.

Fig. 6 shows that as θ increases, f2 (the number of neutral

mutations) tends to decrease. This is consistent with the

increase of the beneficial mutations, since the two numbers

tend to conflict with each other.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we investigated the MO-FBPD problem that

has important applications in the aquaculture industry. The

problem aims to optimise both the short-term gain (e.g.,

beneficial mutations in the fish gene) and long-term gain

(e.g., genetic diversity in the fish population). We developed

a SLiM-based simulator for the fish breeding process, and

formulate the MO-FBPD problem, including the decision

variables and objective functions. Then, we applied NSGA-

II to the problem and analysed its performance on different

scenarios. The experimental results showed that the breeding

programs (represented by the selection strength, i.e., percent-

age of top fish to be mated) obtained by NSGA-II are able

to generalise well through different fish population size. This

is an important observation, since it implies that the breeding

program design is generic, and can be applied to any future

breeding process regardless of its fish population size. In
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Fig. 6. Relationship between the selection strength θ and f2.

addition, we have observed that it is undesirable to select the

mating fish too greedily, as it will behave oppositely as we

expected (decrease the number of beneficial mutations and

increase the number of neutral mutations).

In future, we plan to further improve the simulation process

to make it closer to reality by including more real-world

factors. We will also improve the definition of objective func-

tions to include more considerations (e.g., multiple traits). We

will also develop better MOEAs to improve the optimisation

results.
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